57 research outputs found

    Giant defect emission enhancement from ZnO nanowires through desulfurization process.

    Get PDF
    Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate. In this work we present a new method, for which we coin term desulfurization, for creating green emitting ZnO with significantly enhanced quantum efficiency. Solution grown ZnO nanowires are partially converted to ZnS, then desulfurized back to ZnO, resulting in a highly controlled concentration of oxygen defects as determined by X-ray photoelectron spectroscopy and electron paramagnetic resonance. Using this controlled placement of oxygen vacancies we observe a greater than 40-fold enhancement of integrated emission intensity and explore the nature of this enhancement through low temperature photoluminescence experiments

    Air and Vacuum Annealing Effect on the Highly Conducting and Transparent Properties of the Undoped Zinc Oxide Thin Films Prepared by DC Magnetron Sputtering

    Get PDF
    In this study, we aim to investigate the effect of zinc interstitials (Zni) and oxygen vacancies (VO) on the ZnO electrical conductivity. ZnO films were synthesized via DC magnetron sputtering process using pure Zn target in gases mixture of Ar/O2 = 80/17.5 (sccm). In order to improve the optical and electrical prosperities, the obtained films were subjected to air and vacuum annealing treatment. Several techniques such as field emission scanning electron microscopy (FESEM), Grazing Incidence X-ray Diffraction (GIXRD), Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible were used to study the influence of heat treatment on structural and physical properties of ZnO films. Electrical conductivity of ZnO thin films was determined by measuring the sheet resistance and thickness of the films.  XRD results confirm the synthesis of annealed ZnO films of the hexagonal structure with a preferential orientation along the (002) plane. The average crystallite size is altered between 22.6 to 28.4 nm dependent on the plan orientation of the ZnO film. Morphology and crystallinity of the ZnO structure could efficiently control the transmittance, electrical resistivity and optical band gap. As deposited ZnO film showed a lower electrical resistivity of 2.72Ă—10-3 Ωcm due to the Zn-rich conditions. Under vacuum annealing, a combination of low resistivity (1.17Ă—10-2 Ωcm) and better optical transmittance (87 %) are obtained. ZnO films developed in this study with high transmittance and low resistivity and good electro-optical quality supports their use in transparent and conductive electrode applications. The plan presentation was visualized using Vesta, with the lattice parameter set as follows: a = b = 3.249 Ă…; c = 5.207 Ă…; α = β = 90°; Îł = 120°. Based on the construction and optimization of primitive cells, the supercells were constructed and then optimized. Finally, (002) and (103) planes were cut and the planar supercell structure was constructed. In order to make a plane representation for the solid bulk with 10 Ă… of thickness

    Qualitätsmanagement und Social Media

    Get PDF
    Basierend auf den technischen Entwicklungen des Internets in den letzten Jahren nimmt die Nutzung sowohl im privaten als auch im geschäftlichen Bereich ständig zu. Durch seine zunehmend bessere Unterstützung der Prozessabläufe in Organisationen steigt die Nachfrage nach Lösungen für verschiedene Querschnittsfunktionen, wie beispielsweise der Dokumentationspflichten im Qualitätsmanagement. Im Rahmen dieses Beitrages wird ein Ansatz aufgezeigt, wie sich moderne Techniken aus dem Bereich des Social Media nutzen lassen, um Qualitätsmanagement-Handbücher zu erstellen und das Leben dieser Inhalte zu intensivieren. Ein besonderes Augenmerk liegt dabei auf der Zusammenarbeit aller Mitarbeiter einer Organisation

    ZnO based UV photonics : enhanced emission and energy transfer through top-down micro and nanostructuring

    No full text
    Le présent travail de thèse a été effectué dans le cadre du projet CPER-FEDER MATISSE, projet coordonné par l’UTT regroupant deux autres partenaires : Nanovation et l’URCA. Le projet avait pour ambition la croissance des couches minces de ZnO de haute qualité et leur valorisation.Le ZnO cristallin est un semiconducteur à grand gap avec d’excellentes propriétés optiques. Son énergie de liaison excitonique de 60meV est l’une des caractéristiques qui lui valent tant d’attention malgré sa difficile gravure physique qui hypothèque la réalisation de composants photoniques compacts. En effet, la longueur d’onde d’émission du ZnO est de l’ordre de 375nm, impliquant l’utilisation de structures de petite taille dont la réalisation relève des nanotechnologies.Trois objectifs scientifiques ont été poursuivis : l’amélioration de l’extraction de l’émission excitonique dans les couches minces de ZnO par ingénierie de gap en utilisant les cristaux photoniques, l’émission laser et son contrôle et enfin, le transfert d’énergie du ZnO vers les QDots comme couche de phosphores pour la conversion de l’émission UV en lumière blanche. Pour y parvenir, deux technologies ont été utilisées : la croissance PLD (Nanovation) et la structuration par approche top-down délaissée par la communauté scientifique.La thèse traite de la structuration par lithographie électronique combinée à la gravure RIE-ICP et les études scientifiques associées. Les résultats obtenus sont concluants avec parfois des records comme pour le gain (>1000cm-1) et les pertes optiques (1000 cm-1) and low optical losses (<10 cm-1). We also carried out first optoelectronic components: MIS laser and MSM photodetecto

    Photonique UV : structuration top-down du ZnO pour une émission amplifiée et un transfert d'énergie efficace

    No full text
    This work was conducted in the framework of the MATISSE project supported by the CPER-FEDER. Coordinated by UTT and including two other partners: Nanovation and URCA, the main project objective was the growth of high quality ZnO thin films and their valorization.ZnO is a wide band gap semiconductor with excellent optical properties. Its exciton binding energy (60meV) is one of the most important characteristics that earned to ZnO more attention despite its physical etching which is difficult to perform. Indeed, the excitonic emission of ZnO occurs approximately at 375nm, which involves the use of small structures whose achievement leads to the use of nanotechnology.Three scientific objectives were pursued: improving the extraction of the excitonic emission in ZnO thin films by engineering the photonic band gap by using photonic crystals, laser emission and control and finally, energy transfer from ZnO to QDots used as phosphors for down conversion of the UV emission to white emission. To achieve this, two technologies were used: PLD growth (Nanovation) and top-down structuring approach neglected by the scientific community.The thesis mainly deals with the structuring by electron beam lithography combined with ICP - RIE and related scientific studies. Conclusive results have been obtained such as high optical gain (>1000 cm-1) and low optical losses (1000cm-1) et les pertes optiques (<10cm-1). Nous avons également procédé à la réalisation des premiers composants optoélectroniques : laser MIS et photodétecteur MS

    Giant green emission enhancement of ZnO through desulfurization process

    No full text
    International audienceThe optical properties of ZnO has been widely investigated in detail. Typical photoluminescence (PL) of ZnO contains two parts of emission: near bandgap transition induced ultraviolet emission, and a relatively wide visible emission ranging from green to red, which is closely related to concentration of the structural defects. While the green luminescent has been reported to be associated with oxygen vacancies Vo. In this work, we report on an efficient technique namely desulfurization to increase the amount of oxygen vacancy in a ZnO nanowires array. In the case of the desulfurized sample the PL is increased by more than 1 order of magnitude as to compare with the sulfurized one and more than 2 orders of magnitude as to compare with the as grown sample. Structural analysis as well as morphological analysis confirm the origin of the green band emission enhancement in PL emission. Samples preparation as well an in-depth analysis including quantum efficiency will be presented and discussed within the frame of new rare-earth free phosphor material

    ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives

    No full text
    International audienceWe report on the efficient room-temperature photoluminescence (PL) quenching of ZnO in the presence of 2,4-dinitrotoluene (DNT) vapor and for concentration as low as 180 ppb. Compared to ZnO thin films, ZnO nanowires exhibit a strong (95%) and fast (41 s) quenching of the PL intensity in the presence of DNT vapor.Assuming that the PL quenching is due to a trapping of the ZnO excitons by adsorbed DNT molecules, Monte-Carlo calculations show that the nanometric dimensions as well as the better crystallographic quality (longer mean free path) of the ZnO nanowires result in an enhanced trapping process at the origin of the improved sensing properties of the nanowires. The results demonstrate the importance of nanostructures in improving the sensitivity of ZnO. The study also reveals the sensing capability of ZnO nanowires and paves the path towards the potential realization of low-cost sub-ppb nitroaromaticderivative sensors
    • …
    corecore